Differential Equations

Example

1. A population model is given by $\frac{d P}{d t}=-10 P(P-1)(P-5)^{2}$. How does the fate of the population depend on the initial population?

Solution: First we find the equilibrium solutions, or when $\frac{d P}{d t}=0$. The right side is conveniently already factored, so it is $0,1,5$. Then, we determine the sign of the differential in between these equilibrium solutions. At $(0,1)$, it is increasing, at $(1,5)$ it is decreasing, and at $(5, \infty)$ it is also decreasing. This means if you start at a population greater than 5 , you go down to 5 , if you have between 1 and 5 , you go down to 1 , if you have between 0 and 1 , you go up to 1 . So 0 is unstable, 1 is stable, and 5 is semistable.

Problems

2. True FALSE Given a differential equation $\frac{d P}{d t}=f(P)$, if we cannot solve for P, then we have no hope of describing P 's behavior.

Solution: This is false because finding the zeros of $f(P)$ allows us to see where the equilibria solutions are and whether they are stable/semistable/unstable which gives us a general idea of what solutions look like.
3. True FALSE If the rate of change of x is proportional to x, then $\frac{d x}{d t}=a x+b$.

Solution: There is no extra b factor.
4. TRUE False The doubling time of the differential equation $\frac{d N}{d t}=2 t$ depends on the initial value of N.

Solution: Notice that the function is now $2 t$ so solving gives $N=t^{2}+C$. So, the doubling time will depend on the initial condition which will give the constant C.
5. Write a differential equation describing the fact that the rate of change of the mass M of an object is proportional to its cube root.

Solution:

$$
\frac{d M}{d t}=k \sqrt[3]{M}
$$

6. If $\frac{d N}{d t}=(-\ln 2) N$, then does the doubling time or halving time make more sense? Find it.

Solution: The halving time makes sense because the population is decreasing. The formula is $\frac{\ln 2}{r}$, where r is your rate of growth, so the halving time is just 1 .
7. A population model is given by $\frac{d P}{d t}=(P-1)(P-10)$. How does the fate of the population depend on the initial population?

Solution: The equilibrium solutions are $P=1,10$. Looking at signs, $P=1$ is a stable solution and $P=10$ is an unstable solution.

Separable Equations

Example

8. Find the solution to $\frac{d y}{d t}=3 t^{2} y^{3}+e^{t} y^{3}$ with $y(0)=-1$.

Solution: We factor the right side as $y^{3}\left(t^{2}+e^{t}\right)$ so we have that

$$
\frac{d y}{y^{3}}=\left(3 t^{2}+e^{t}\right) d t .
$$

Taking the integral of both sides gives

$$
\frac{-1}{2 y^{2}}=t^{3}+e^{t}+C \Longrightarrow y^{2}=\frac{-1}{2 t^{3}+2 e^{t}+C}
$$

Now plugging in the initial condition that $y(0)=-1$, we have that $1=\frac{-1}{0+2 e^{0}+C}$ so $2+C=-1$ and $C=-3$. Therefore, we have

$$
y^{2}=\frac{-1}{2 t^{3}+2 e^{t}-3}
$$

If we want this in terms of y only, then we have to choose which sign of y to take. We are given that $y(0)=-1$, so we take the negative square root and

$$
y=-\sqrt{\frac{-1}{2 t^{3}+2 e^{t}-3}} .
$$

Problems

9. True FALSE We can always use the method of separable equations to solve $\frac{d y}{d t}=$ $f(y, t)$.

Solution: This is false because if we cannot separate this equation, then we cannot use separable equations.
10. True FALSE The differential equation $\frac{d y}{d t}=y+t$ is separable.

Solution: A separable equation is an equation where we can split it up into a function of y times a function of t. Addition will not work.
11. Find the solution to $\frac{d y}{d t}=t e^{y}$ with $y(0)=1$.

Solution: Separating gives

$$
d y e^{-y}=t d t \Longrightarrow-e^{-y}=\frac{t^{2}}{2}+C
$$

Taking a negative sign and \ln gives $-y=\ln \left(-t^{2} / 2-C\right)$ so $y=-\ln \left(-t^{2} / 2-C\right)$. Now we have that $y(0)=1$ so $1=-\ln (-0-C)$ so $-1=\ln (-C)$ and $-C=e^{-1}$ and $C=-e^{-1}$. So our function is

$$
y=-\ln \left(-t^{2} / 2+e^{-1}\right)
$$

12. Find the solution to $\frac{d y}{d x}=6 x y^{2}$ with $y(1)=1 / 4$.

Solution: Splitting gives

$$
\frac{d y}{y^{2}}=6 x d x \Longrightarrow \frac{-1}{y}=3 x^{2}+C \Longrightarrow y=\frac{-1}{3 x^{2}+C}
$$

Plugging in $y(1)=\frac{1}{4}$ gives $\frac{1}{4}=\frac{-1}{3+C}$ so $3+C=-4$ and $C=-7$. Therefore, we have

$$
y=\frac{-1}{3 x^{2}-7} .
$$

13. Find the solution to $\frac{d y}{d x}=\frac{3 x^{2}+2 x+1}{2 y+1}$ with $y(0)=1$.

Solution: Split and get

$$
(2 y+1) d y=\left(3 x^{2}+2 x+1\right) d x \Longrightarrow y^{2}+y=x^{3}+x^{2}+x+C .
$$

We cannot explicitly solve for y easily so we have to leave it in this form. But, we can solve for c to get $y(0)=1$ so $1+1=C=2$. Therefore, the implicit solution is

$$
y^{2}+y=x^{3}+x^{2}+x+2 .
$$

14. Find the solution to $\frac{d r}{d t}=\frac{r^{2}}{t}$ with $r(1)=1$.

Solution: Split to get $\frac{d r}{r^{2}}=\frac{d t}{t}$ so $-1 / r=\ln t+C$ and $r=\frac{-1}{\ln t+C}$. Plugging in $r(1)=1$, we have that $1=\frac{-1}{0+C}$ so $C=-1$. Therefore, we have

$$
r=\frac{-1}{\ln t-1} .
$$

15. Find the solution to $\frac{d y}{d t}=2 y+3$ with $y(0)=0$.

Solution: Separate to get

$$
\frac{d y}{2 y+3}=d t \Longrightarrow \frac{\ln (2 y+3)}{2}=t+C
$$

so $2 y+3=e^{2 t+C}$. We can bring the constant down as multiplying by a constant so $e^{2 t+C}=e^{2 t} \cdot e^{C}=C e^{2 t}$ and so

$$
y=\frac{C e^{2 t}-3}{2}
$$

Taking $y(0)=0$ gives $0=(C-3) / 2$ so $C=3$ and we get

$$
y=\frac{3 e^{2 t}-3}{2}
$$

16. Find the solution to $\frac{d x}{d y}=e^{x-y}$ with $x(0)=0$.

Solution: We can split e^{x-y} as $e^{x} \cdot e^{-y}$ and now splitting gives

$$
e^{-x} d x=e^{-y} d y \Longrightarrow-e^{-x}=-e^{-y}+C
$$

so $e^{-x}=e^{-y}+C$ and $-x=\ln \left(e^{-y}+C\right)$ and $x=-\ln \left(e^{-y}+C\right)$. Plugging in $x(0)=0$ gives $0=-\ln (1+C)$ so $1+C=0$ and $C=-1$. So

$$
x=-\ln \left(e^{-y}-1\right)
$$

